面向世界科技前沿,面向国家重大需求,面向国民经济主战场,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 >  > 

最大私彩网站_信誉好的私彩网站

時間:2022-08-16 來源:本站 點擊:258次
【字体:

双语热点:电动车前方的一大“路障”:报废的锂电池怎么办?******

汽车电气化的到来比我们原想象的要快得多。到2040年,全球三分之二的载人汽车将会是电动车。汽车电气化带动锂电池的生产也不断升高,但是如何处理报废旧电池却是一个令人头痛的大问题。

Lithium batteries' big unanswered question

As the quiet whirr of electric vehicles gradually replaces the revs and noxious fumes of internal combustion engines, a number of changes are set to filter through our familiar world. The overpowering smell of gas stations will fade away into odourless charge stations where cars can re-juice their batteries as needed. Meanwhile, gas-powered generator sites that dot the horizon may be retrofitted to house massive batteries that could one day power entire cities with renewable energy.

当公路上燃油汽车内燃机产生的震动和排放的有毒气体正逐渐被电动汽车的平稳和静音所取代之时,我们所熟悉的世界将会发生很多变化。加油站的刺鼻气味将逐渐消失,取而代之的是提供汽车随时可以充电但却无刺鼻气味的充电站。同时,天边随处可见的天然气发电站也可能会重建为能容纳大型电池的电站,这些大型电池有朝一日可以作为再生能源为整个城市提供电力。

This electrified future is much closer than you might think. General Motors announced earlier this year that it plans to stop selling gas-powered vehicles by 2035. Audi's goal is to stop producing them by 2033, and many other major auto companies are following suit. In fact, two-thirds of the world's passenger vehicle sales will be electric by 2040. And grid-scale systems the world over are growing rapidly thanks to advancing battery storage technology.

汽车电气化的到来比我们原想象的要快得多。美国通用汽车2021年年初宣布,计划在2035年前停止销售汽油动力汽车。德国汽车制造商奥迪的目标是到2033年停止生产燃油车,其他大型汽车公司也纷纷跟随。到2040年,全球三分之二的载人汽车将会是电动车。由于电池储电技术的进步,全球电网的电池储电系统也正在迅速发展。

While this may sound like the ideal path to sustainable power and road travel, there's one big problem. Currently, lithium (Li) ion batteries are those typically used in EVs and the megabatteries used to store energy from renewables, and Li batteries are hard to recycle.

虽然汽车电气化的到来听来像是实现可持续能源和公路环保旅行最理想不过的路径,但有一个大问题成为实现理想的障碍。目前,通常用于电动车和存储可再生能源的超大容量电池是锂离子电池(简称锂电池),而锂电池很难做到回收利用。

One reason is that the most widely used methods of recycling more traditional batteries, like lead-acid batteries, don't work well with Li batteries. The latter are typically larger, heavier, much more complex and even dangerous if taken apart wrong.

一个原因是,现在广泛适用于传统电池,如铅酸电池的回收技术,无法用于锂电池的回收。锂电池比前者更大和更重、而且构造更复杂,如果拆开方法不当,甚至会有危险。

In your average battery recycling plant, battery parts are shredded down into a powder, and then that powder is either melted (pyrometallurgy) or dissolved in acid (hydrometallurgy). But Li batteries are made up of lots of different parts that could explode if they're not disassembled carefully. And even when Li batteries are broken down this way, the products aren't easy to reuse.

在一般的电池回收工厂中,电池零件先被粉碎成粉状颗粒,然后再加以熔化(即火法冶金),或溶解到酸液中(即湿法冶金),以回收其中的金属物。而锂电池则由很多不同的部件组成,如果不小心拆卸,这些部件可能会爆炸。即使锂电池按一般电池作分解,分解出来的产品也很难回收再用。

"The current method of simply shredding everything and trying to purify a complex mixture results in expensive processes with low value products," says Andrew Abbott, a physical chemist at the University of Leicester. As a result, it costs more to recycle them than to mine more lithium to make new ones. Also, since large scale, cheap ways to recycle Li batteries are lagging behind, only about 5% of Li batteries are recycled globally, meaning the majority are simply going to waste.

英国莱斯特大学(University of Leicester)的物理化学家安德鲁·阿伯特(Andrew Abbott)说,“目前的电池回收方法只是简单地将所有东西粉碎,然后再提取精炼复杂的混合物,这一回收过程成本高,但成功回收的产品价值却不高。”因此,回收锂电池的成本比开采更多金属锂来生产新锂电池的成本还要大。此外,由于大规模廉价回收锂电池的方式相当落后,全球只有大约5%的锂电池能够回收。换言之,大多数锂电池最后都成了垃圾废品。

But as demand for EVs escalates, as it's projected to, the impetus to recycle more of them is set to barrel through the battery and motor vehicle industry.

不过随着对电动汽车的需求不断升级,就如预计所料,电池业和汽车行业很快将会有更大的动力回收更多的电动车电池。

The current shortcomings in Li battery recycling isn't the only reason they are an environmental strain. Mining the various metals needed for Li batteries requires vast resources. It takes 500,000 gallons (2,273,000 litres) of water to mine one tonne of lithium. In Chile's Atacama Salt Flats, lithium mining has been linked to declining vegetation, hotter daytime temperatures and increasing drought conditions in national reserve areas. So even though EVs may help reduce carbon dioxide (CO2) emissions over their lifetime, the battery that powers them starts its life laden with a large environmental footprint.

锂电池的回收还不是造成环境压力的唯一原因。开采锂电池所需的各种金属需要大量资源。开采一吨锂需要消耗50万加仑的水。在智利的阿塔卡马盐滩(Atacama Salt Flats),因为开采锂矿,结果造成植被减少、白天气温升高,以及所在的国家保护区干旱日益严重等环保问题。因此,尽管电动汽车可以有助于减少二氧化碳的排放,但为其提供动力的电池一开始就对环境造成了很大的影响。

If the millions upon millions of Li batteries that will give out after around 10 years or so of use are recycled more efficiently, however, it will help neutralise all that energy expenditure. Several labs have been working on refining more efficient recycling methods so that, eventually, a standardised, eco-friendly way to recycle Li batteries will be ready to meet skyrocketing demand.

锂电池使用大约10年就会报废,如果能有效回收报废的千百万块锂电池,将有助于中和生产及回收锂电池所消耗的能源。现已有好一些科研实验室在改进更有效的回收方法,一旦成功,最终能找到一个既标准化也很环保的回收技术,就能充分迎接锂电池需求量大增时代的到来。

"We have to find ways to make it enter what we call a circular lifecycle, because the lithium and the cobalt and nickel take a lot of electricity and a lot of effort to be mined and refined and made into the batteries. We can no longer treat the batteries as disposable," says Shirley Meng, professor in energy technologies at the University of California, San Diego.

加州大学圣地亚哥分校(University of California, San Diego)的能源技术教授孟颖(Shirley Meng)说,“我们必须找到方法让锂电池进入我们所说的循环生命周期,因为锂、钴和镍需要大量的电力和大量的工作来开采、提炼和制造电池。我们不能再把锂电池当作一次性使用的产品。”

How to recycle Li batteries

如何回收锂电池

A Li battery cell has a metal cathode, or positive electrode that collects electrons during the electrochemical reaction, made of lithium and some mix of elements that typically include cobalt, nickel, manganese and iron. It also has an anode, or the electrode that releases electrons to the external circuit, made of graphite, a separator and an electrolyte of some kind, which is the medium that transports the electrons between cathode and anode. The lithium ions travelling from the anode to the cathode form an electric current. The metals in the cathode are the most valuable parts of the battery, and these are what chemists focus on preserving and refurbishing when they dismantle an Li battery.

锂电池有一个金属阴极装置,或称为正极,由锂和一些混合元素组成,通常包括钴、镍、锰和铁,其作用是在电化学反应中接受电子。锂电池还有一个阳极装置,或称负极,由石墨、分离器和某种电解液组成,功能是将阴极的电子释放到外部电路。电解液作用是充当阳极到阴极之间传输锂离子而形成电流的介质。阴极中的金属是电池最有价值的部分,这是化学家拆卸锂电池时主要保存和提炼的物质。

Meng says to think of an Li battery like a bookshelf with many layers, and the lithium ions rapidly move across each shelf, cycling back each time to the top shelf – a process called intercalation. After years and years, the bookshelf naturally starts to break down and collapse. So when chemists like Meng dismantle an Li battery, that's the sort of degradation they see in the structure and materials.

孟颖说,可以把锂离子电池想象成一个有许多层隔的书架,而锂离子会经过书架每一层快速移动,每次循环都会回到最上面的一层,这个化学过程被称为插层,或曰嵌入。经历多年的不断嵌入后,这个锂电池书架自然会崩坏坍塌。所以当化学家如孟颖等拆卸这个用了几年的锂电池时,他们在锂电池结构和材料上所看到的就是这种退化。

"We can actually find the mechanisms, [and] either using heat or some kind of chemical treatment method, we can put the bookshelf back [together]," says Meng. "So we can let those recycled and refurbished materials go back to the assembly line to the [Li battery] factories to be made into new batteries."

孟颖说,“我们可以找到其中的机制,通过加热或某种化学处理方法,把这个锂电池书架重新组装起来。因此,我们可以把这些回收和翻新的金属材料送回到锂电池工厂的装配线,生产新的电池。”

Improving Li battery recycling and ultimately making their parts reusable will reinfuse value into the Li batteries already out there. This is why scientists are advocating for the direct recycling process Meng describes – because it can give the most precious parts of Li batteries, like the cathode and anode, a second life. This could significantly offset the energy, waste and costs associated with manufacturing them.

改善锂电池的回收利用,并最终实现可重复使用其部件,将会为价值颇高的锂电池再增加新的价值。这就是为什么科学家们要提倡直接回收再用,如孟颖所说,因为直接回收可以给锂电池的价值最高部件,即阴极和阳极材料予第二次生命。这可以显著抵消制造锂电池所消耗的能源和废料,以及付出的成本。

But disassembling Li batteries is currently being done predominantly by hand in lab settings, which will need to change if direct recycling is to compete with more traditional recycling methods. "In the future, there will need to be more technology in disassembly," says Abbott. "If a battery is assembled using robots, it is logical that it needs to be disassembled in the same way."

但目前锂电池的拆卸主要还只能是实验室中靠人手完成,如果直接回收利用要与较传统的回收方法相竞争,就需要改变人手拆卸这种低效率的方法。阿伯特说:“未来需要技术含量较高的拆卸法。如果用机器人组装电池,那么以同样的方式予以拆卸也是合逻辑的。”

Abbott's team at the Faraday Institution in the UK is investigating the robotic disassembly of Li batteries as part of the ReLib Project, which specialises in the recycling and reuse of Li batteries. The team has also found a way to achieve direct recycling of the anode and cathode using an ultrasonic probe, "like what the dentist uses to clean your teeth," he explains. "It focuses ultrasound on a surface which creates tiny bubbles that implode and blast the coating off the surface." This process avoids having to shred the battery parts, which can make recovering them exceedingly difficult.

阿伯特在英国法拉第研究所(Faraday Institution)的团队正在研发机器人拆卸锂电池的技术,这是专门研究锂电池的回收和再利用计划ReLib Project的一部分。这个研究团队还发现了一种利用超声波探头实现阳极端和阴极端直接回收的方法。他解释道,“就像牙医清洁牙齿一样,用超声波聚焦在正负两个电极板表面,使内层产生微小的气泡,然后发生内爆,将表面的涂层炸离。”这一过程维护了这两个重要部件的完整,避免了以往必须完全拆解因而使得回收大不易这个难题。

According to Abbott's team's research, this ultrasonic recycling method can process 100 times more material over the same period than the more traditional hydrometallurgy method. He says it can also be done for less than half the cost of creating a new battery from virgin material.

根据阿伯特团队的研究,在同样长的时间,这种超声波回收方法可以比传统的湿法冶金方法多处理100倍的材料。他说,这种回收技术所耗成本甚至还不到用原始材料制造新电池成本的一半。

Abbott believes the process can easily be applied to scale, and used on larger grid-based batteries, because they typically have the same battery cell structure, they just contain more cells. However, the team is currently only applying it to production scrap, from which parts are easier to separate, because they're already free of their casings. The team's robotic dismantling tests are ramping up though. "We have a demonstrator unit that currently works on whole electrodes and we hope in the next 18 months to be able to showcase an automated process working in a production facility," says Abbott.

阿伯特认为,超声波回收技术很容易作规模性回收,可运用于为电网储电的大型电池,因为这种电池的结构通常与电动车电池相同,只是包含更多的电池组而已。不过这个研究团队目前只将超声波回收技术应用于比较容易拆卸的报废电池,因为这些电池已经没有外壳。不过,研究团队也在加强测试机器人拆解技术。阿伯特说,“我们有一个演示的机器人,目前在展示回收整个电极的工作。我们希望在未来的18个月能够展示在生产线工作的自动化流程。”

Degradable batteries

可降解的电池

Some scientists are advocating for a move away from Li batteries in favour of ones that can be produced and broken down in more eco-friendly ways. Jodie Lutkenhaus, a professor of chemical engineering at Texas A&M University, has been working on a battery that is made of organic substances that can degrade on command.

一些科学家正在提倡抛弃锂电池,转为使用能够以较环保的方式生产和分解的电池。美国德州农工大学(Texas A&M University)的化学工程教授朱迪·卢肯豪斯(Jodie Lutkenhaus)一直在研究一种由有机物质制成可以按指令降解的电池。

"Many batteries today are not recycled because of the associated energy and labour cost," says Lutkenhaus. "Batteries that degrade on command may simplify or lower the barrier to recycling. Eventually, these degradation products could be reconstituted back into a fresh new battery, closing the materials life-cycle loop."

卢肯豪斯说,“由于相关的能源和劳动力成本,今天许多电池是无法回收的。而按指令可降解的电池可以简化或降低回收的障碍。最终,这些降解产物可以被重新组装成新的电池,从而结束电池材料最后只能报废的结局。”

It's a fair argument considering that, even when a Li battery is dismantled and its parts are refurbished, there will still be some parts that can't be saved and become waste. A degradable battery like the one Lutkenhaus' team is working on could be a more sustainable power source.

这是相当合理的论点,因为即使拆卸锂电池后有一些部件可以翻新再用,但仍然会有一些部分无法保存而永远报废。卢肯豪斯团队正在研究的可降解电池可能是一种可持续性更强的能源手段。

Organic Radical Batteries (ORBs) have been around since the 2000s, and function with the help of organic materials that are synthesised to store and release electrons. "An Organic Radical Battery has two of these [materials], both acting as electrodes, that work in concert to store and release electrons, or energy, together," explains Lutkenhaus.

这种名叫有机自由基电池(ORBS)的可降解电池在21世纪初已问世,其机制是通过合成有机材料来存储和释放电量。卢肯豪斯解释说。“有机自由基电池有两种这样的有机物,都能作为电极材料,协同存储和释放电子或能量。”

The team uses an acid to break their ORBs down into amino acids and other byproducts, however, conditions need to be just right for the parts to degrade properly. "Eventually we found that acid at elevated heat worked," says Lutkenhaus.

这个研究小组使用一种酸将有机电池分解成氨基酸和其他副产品,不过需要恰到好处的环境条件才能正常降解。卢肯豪斯说,“最终,我们发现酸在高温下能起降解作用。”

There are a number of challenges ahead for this degradable battery though. The materials needed to create it are expensive, and it has yet to provide the amount of power required for high-demand applications like EVs and power grids. But perhaps the greatest challenge degradable batteries like Lutkenhaus's face is competing with the already well-established Li battery.

然而,这种可降解电池还面临着许多挑战。首先所需的材料非常昂贵,其次还不能提供电动汽车和电网这类需求高电量的电池。不过并非仅止于此,卢肯豪斯等科学家研发的可降解电池面临的最大挑战可能是如何与已经规模生产广泛应用的锂电池相竞争。

The next step for scientists pushing direct recycling of Li batteries forward is working with battery manufacturers and recycling plants to streamline the process from build to breakdown.

科学家推动直接回收锂电池的下一步是与电池制造商和回收工厂合作,简化从建造到分解的过程。

"We are really encouraging all the battery cell manufacturers to barcode all the batteries so with robotic AI techniques we can easily sort out the batteries," says Meng. "It takes the entire field to cooperate with each other in order to make that happen."

孟颖说,“我们鼓励所有的电池制造商给所有的电池贴上条形码,有了人工智能机器人技术,我们可以很容易拣选电池。这需要整个领域的合作才能实现。”

Li batteries are used to power many different devices, from laptops to cars to power grids, and the chemical makeup differs depending on the purpose, sometimes significantly. This should be reflected in the way they're recycled. Scientists say battery recycling plants must separate the various Li batteries into separate streams, similar to how different types of plastic are sorted when recycled, in order for the process to be most efficient.

锂电池用来为众多不同的设备供电,比如笔记本电脑、电动汽车,以及输电网等,因而锂电池的化学组成因用途不同会有所区别,有时差异会很大。这使得回收也应该有不同方式。科学家说,电池回收工厂必须将各种锂电池分成不同的工作流程,就像塑料回收要对不同类型的塑料进行分类一样,这样才能使回收过程最为有效。

And even though they face an uphill battle, more sustainable batteries are slowly but surely coming onto the scene. "We can already see designs entering the market which make assembly and disassembly easier, and it is probable that this will be an important topic in future battery development," says Abbott.

尽管科学家的研发面临着重重困难,可持续性更强的电池正缓慢而稳步地进入市场。阿伯特说,“我们已经可以看到,组装和拆卸较容易的设计已经进入市场,这很可能是未来电池发展的一个重要主题。”

On the production side, battery and car manufacturers are working on cutting down on the materials needed to build Li batteries to help reduce energy expenditure during mining and the waste each battery creates at the end of its life.

在生产方面,电池和汽车制造商正在努力减少制造锂电池所需的材料,以帮助减少采矿过程中的能源消耗,以及每个电池在寿命结束时产生的废物。

Electric car manufacturers have also begun to reuse and repurpose their own batteries in a number of different ways. For example, Nissan is refurbishing old Leaf car batteries and putting them in automated guided vehicles that bring parts to its factories.

电动汽车制造商也开始以各种不同的方式回收和翻新再用自产汽车的电池。例如,日产汽车翻新聆风(Leaf)电动汽车的旧电池,然后安装在将零部件运送到日产工厂组装线的自动导航车辆上。

Speed bumps ahead

前方有减速带

The steadily increasing market demand for EVs already has companies across the automobile industry spending billions of dollars on increasing the sustainability of Li batteries. However, China is currently the largest producer of Li batteries by far, and subsequently ahead when it comes to recycling them.

电动汽车市场需求的稳步增长,已经促使整个汽车行业花费数十亿美元来提高锂电池的可持续性。中国目前是锂电池的最大生产国,因此在回收领域也有能力领先同业。

The advent of a less complex, safer battery that is cheaper to make and easier to separate at the end of its life is the ultimate answer to the current sustainability problem with EVs. But until such a battery makes an appearance, standardising Li battery recycling is a significant move in the right direction.

解决当前电动汽车可持续发展问题的最终答案,是要找到一种不那么复杂但却比较安全,制造成本较低但寿命结束后却较易分解的电池。但在这种理想电池问世之前,锂电池回收技术标准化是朝着正确方向迈出的重要一步。

And in about 2025, when millions of EV batteries reach the end of their initial life cycles, a streamlined recycling process will look much more appealing to economies the world over. So perhaps, by the time EVs become the predominant form of transport, there will be a good chance their batteries will be gearing up for a second life.

到2025年左右,数以百万计的电动汽车的电池将达到其初始寿命周期完结之时,因此一个简单而高效率的电池回收流程对全世界的经济体都会深具吸引力。所以,当电动汽车成为人类主要交通工具的时候,很有可能那时电动车电池将不会寿终正寝,而会获得第二次生命,重新启动汽车驰上公路。

Maccabi hand Barcelona first defeat in basketball's Euro League******

JERUSALEM, Oct. 28 (Xinhua) -- Israeli champions Maccabi Tel Aviv notched an impressive 85-68 home win over Spanish champions FC Barcelona in the seventh round of basketball's Euro League on Thursday evening.

It was Barcelona's first loss in the tournament after six straight wins, while Maccabi now have five wins in seven games.

Maccabi dominated the first quarter, which ended 31-18, thanks to points by Derrick Williams, Scottie Wilbekin and Jalen Reynolds.

James Nunnally and Keenan Evans lifted the home team 45-24 ahead in the 26th minute and ended the half 56-36 up.

Nicola Mirotic led Barcelona to an 8-0 run early in the third quarter, and later the gap was cut to 65-54 at the end of the quarter with key points by Cory Higgins.

A strong team defense and significant offensive contribution by Wilbekin raised Maccabi to 74-58, and the Israeli side held on for a comfortable win.

Nunnally scored a team-high 17 points for Maccabi, with Wilbekin adding 16 more.

Higgins led the Barcelona scorers with a game-high 20 points. Mirotic added 17 points.

Barcelona will play their next game in Italy against Olimpia Milano on November 4, while Maccabi will face Saski Baskonia in Spain the following evening. Enditem

【最大私彩网站_信誉好的私彩网站👉👉十年信誉大平台,点击进入👉👉 打造国内最专业最具信赖的彩票平台,为您提供最大私彩网站_信誉好的私彩网站用户登录全网最精准计划软件,APP下载登陆,强大的竞彩网上推荐!!】

西安维权女车主反被债主维权,一码归一码 ******

原标题:西安维权女车主反被债主维权,一码归一码

陈迪说:西安奔驰女车主维权和解 乱象之下是行业困局

.

▲西安维权奔驰女车主和解。 新京报我们视频出品

引发舆论热议的“西安奔驰女车主维权事件”,对于当事人来说,终于迎来了不错的结果,当事人也因此被称为“维权女王”。

有意思的是,该事件刚告一段落,维权接力棒就交到了另一方手上。

据红星新闻报道,西安奔驰女车主眼下似乎身陷债务纠纷——就在她跟4S店和解的当晚,有广告商登上了从上海飞往西安的航班。他已催债8个月,讨债对象之一就是奔驰维权女车主。还有媒体报道,上海多商户称女车主担任监事的公司,至少拖欠575万元债款。

另有网络爆料称,她涉嫌诈骗以及700多万元卷款逃逸案,上海徐汇警方对此透露,她所在公司主要是由于经营不善拖欠款项,她因此和讨债方在派出所协调,属于民事纠纷并非刑事犯罪。

“维权女王”反被维权,这看起来很有戏剧性,但又是正常的舆论现象。俗话说,人怕出名猪怕壮,当一个人成了名,她(他)身上的很多东西都会被放大,包括优缺点,包括曾经做过的好事坏事。如今,“维权女王”获得了舆论关照,也基于哭诉维权成功。

那么,针对部分商户“诉求箭头”对准她的维权,我们该如何看待?

首先要明确,这是同一个人,却不是同一件事。既然是两件事,就要一码归一码。

至于姿势怎么摆,很简单,我们当时是怎么围观“坐引擎盖”的,就该怎么围观“拖欠债款”。这两起事件本质上是一样的,都是疑似权益被侵犯者,对自我权益的诉求。只不过,在一起事件中的陈诉者,变成了另一起事件中的被陈诉者。

也正因此,我们没必要为一个维权者“镀金”,她该是什么样就是什么样,她以前做过什么,并不影响她的权益遭遇侵犯后奋力维权。

公众的注意力,应放在具体的事件中,而不是个人的品质上,这就是我们常说的“对事不对人”。这就是法律的基本逻辑,也是实现公平正义的基本方式。

举个很简单的例子,公正的司法评判,从来都是“你做的这个事是对是错,违反了哪条法规,相应地给予何种处罚”,而不是“你这人有多坏,负面形容词有多少,我就判你多重。”

或许有人吐槽,本来女车主维权成功,让人挺开心的,但她又出了这么个事,直让人怀疑人生。

其实完全没必要为此心情跌宕。人是复杂的,她哭诉维权时占理,不等于她在什么事中都占理。所以我们既没必要因她被卷入债务纠纷,就否定她此前正当维权的意义,也没必要因她跟“店大欺客”乱象的叫板,就觉得她牵涉债务纠纷不可思议。

相反,我们应该对这种舆论连锁反应感到高兴,因为西安女车主的成功维权,不仅启发了很多其他车主维权,甚至还启发了债权者对西安女车主的维权。只要诉求是正当的,我们乐见这种搭新闻便车的维权意识。

所以,西安奔驰维权女车主反被维权,不必过于讶异。女车主可以对4S店正当维权,别人也可以对她维权,这很正常。而对于所涉具体事宜,舆论也不妨“一码归一码”,让是非对错被置于法律视野下审视,而非臆断先行。

□与归(媒体人)

编辑 杨林鑫 校对 危卓

Panama, Peru to play January friendly******

PANAMA CITY, Dec. 3 (Xinhua) -- Panama and Peru will meet in an international friendly next month as both teams prepare to resume their 2022 FIFA World Cup qualifying campaigns.。

The clash will be played on January 16 at Estadio Nacional in Peruvian capital Lima and will have a 4pm kickoff, according to a statement published on the Panamanian football federation's official website on Friday.。

Panama, who are currently fourth in the North, Central America and Caribbean zone (CONCACAF) qualifying standings, will use the match to fine-tune ahead of a triple-header of qualifiers.。

The Central American team will face Costa Rica on January 27, Jamaica on January 30 and Mexico on February 2.。

Peru, fifth in South America's CONMEBOL qualifying tournament, will meet Colombia on January 27 and Ecuador on February 1.。

The top three teams in CONCACAF will earn an automatic World Cup berth while the fourth-ranked side will advance to an intercontinental playoff.。

In the CONMEBOL region, the top four sides will book a direct ticket to football's showpiece event in Qatar and the fifth team will clinch a playoff spot.。

Panama and Peru have not played each other since a friendly in August 2014, when the latter prevailed 3-1 in Lima. Enditem。

广州二手房挂牌量超过11万套,增城有楼盘降价20%

1.第二届“智能化战争”研讨会在京举行

2.微胖女生穿搭记住6点 身材越穿越好!

3.互联网新闻信息许可证10120170002

4.@战友,这组网络安全警示漫画发人深省,不容错过

© 1996 - 最大私彩网站_信誉好的私彩网站 版权所有 xxxxx

地址:

电话:(总机)

编辑部邮箱:

伯乐彩票-首页-每日彩票官网-每日彩票首页-手机购彩(中心)有限公司-伯乐彩票-安全购彩-1分钟快三彩票平台-东风彩票_首页_东风彩票官网-大发1分快3-首页-大发彩票-官方-彩八万-官网-今日彩票-首页-购彩大厅彩票-官网-彩票app-购彩大厅-彩神2下载-彩神2下载ios-全国快三app下载-首页-亚投购彩_亚投官网-彩票大赢家-官网
游客开车碾压草原 牧民制止反遭辱骂 在取证时被击打手机| 辽宁遭暴雨侵袭致城市内涝 紧急转移12万人| 广播电视节目制作经营许可证(京)字第01567号| 汇聚民间力量 共促全球发展(命运与共)| 带兵骨干与高学历士兵:“融” 出战斗力| 百胜中国:在港交所主板申请将其第二上市地位自愿转换为主要上市| 日本经济产业大臣参拜靖国神社 汪文斌:提出严正交涉| 南海战略态势感知:"里根"号航母于12日前后再次南下| 养狗劝退指南,第一条就把我送走了| 北京日报客户端| 粤网文[2020]3396-195号| 斯里兰卡向中国科考船发放停靠许可 否认受到印方施压| 茅台削藩:经销商少上千家,批发收入首次下滑,直销业绩飙涨| 西藏航空:关于发布林芝疫情客票免费退改的通知| 瑞幸复活,但它的对手早就不是星巴克| 林子祥和叶倩文:岁月如歌 且行且唱| 台媒: 五大原因注定"里根"号不可能穿越台湾海峡| “康老虎”康虎振将军逝世,曾在自卫反击战中重创敌王牌师|